یکپارچه سازی تکنیک های هوش مصنوعی جهت ارائه مدل پیش بینی قیمت سهام
نویسندگان
چکیده
اوراق بهادار روش مطمئنی است برای جلب اعتماد عمومی جهت سرمایه گذاری درانواع اوراق بهادار با خطرهای متفاوت است و با این روش می توان سرمایه های کوچک و پراکنده را که به تنهایی نمی توانند مورد بهره برداری قرار گیرند جمع آوری نمود از آنها سرمایه هنگفتی جهت توسعه و پیشرفت اقتصادی فراهم آورد. در بورس های اوراق بهادار حساسیت های زیادی نسبت به روند قیمت وجود دارد این امر باعث گردیده تا تحولات مرتبط با چنین پدیده ای مورد تحلیل های منظم قرار گیرد . در سال های اخیر مدل های متفاوتی جهت پیش بینی قیمت سهام توسط محققین مورد استفاده قرار گرفته است و از آنجایی که تکنیک های هوش مصنوعی که شامل شبکه های عصبی، الگوریتم ژنتیک و منطق فازی است نتایج موفقیت آمیزی در زمینه حل مسایل پیچیده به دست آورده اند در این راستا بیشتر مورد بهربرداری قرار گرفته اند. هدف از این تحقیق رسیدن به این پاسخ است که آیا می توان با استفاده از ترکیب روش های هوش مصنوعی مدلی ایجاد نمود که نسبت به سایر روش های خطی و غیر خطی پیش بینی قیمت سهام (بورس اوراق بهادار تهران - شرکت ایران خودرو )را با میزان خطای کمتری انجام دهد. در این تحقیق جهت پیش بینی قیمت سهام از ترکیب روش های هوش مصنوعی شامل شبکه های عصبی – فازی و الگوریتم ژنتیک استفاده شده است و این مدل ترکیبی با روش های شبکه عصبی به عنوان یکی دیگر از مدل های هوش 2 مصنوعی و مدل خطی arima با توجه به معیارهای mse,mape,mae, r مقایسه گردیده اند. نتایج این پژوهش نشان از برتری مدل ترکیبی نسبت به سایر مدل ها مورد بررسی دارد .
منابع مشابه
مقایسه روشهای کلاسیک و هوش مصنوعی در پیش بینی شاخص قیمت سهام و طراحی مدل ترکیبی
امروزه، سرمایه گذاری در بورس، بخش مهمی از اقتصاد کشور را تشکیل می دهد. به همین دلیل پیش بینی قیمت سهام برای سهامداران از اهمیت خاصی برخوردار شده است تا بتوانند بالاترین بازده را از سرمایه گذاری خود کسب کنند. از سوی دیگر، شاخص قیمت سهام نشان¬دهنده وضعیت کلی بازار سهام است و می تواند به پیش بینی سهامداران جهت سرمایه گذاری کمک کند. اغلب در سالهای گذشته از روشهای کلاسیک برای پیش بینی قیمت سهام استف...
متن کاملمدل ترکیبی شبکه های عصبی مصنوعی پیش خور و خود سازمانده کوهونن برای پیش بینی قیمت سهام
این مقاله ضمن ارائه مدلی ترکیبی از شبکه های عصبی مصنوعی، به بررسی توان پیش بینی کنندگی آنها در مقایسه با مدل های منفرد می پردازد. در این بررسی، با استفاده از شبکه های عصبی ترکیبی متشکل از شبکه های پیش خور و خود سازمانده کوهونن اقدام به پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام در بازار بورس تهران نشان می دهد ...
متن کاملپیش بینی شاخص قیمت سهام با استفاده از مدل هیبریدی
پیشبینی شاخص قیمت بازار سهام به علت تاثیرپذیری آن از بسیاری عوامل اقتصادی و غیراقتصادی همواره امری مهم و چالش برانگیز بوده، به طوری که انتخاب بهترین و کارآمدترین مدل به منظور پیشبینی آن امری دشوار میباشد. از طرفی سریهای زمانی دنیای واقعی، برای مثال سری زمانی شاخص قیمت سهام، به ندرت دارای ساختاری کاملاً خطی و یا غیرخطی است. مدلهای هموارسازی نمایی، میانگین متحرک خودرگرسیون انباشته (آریما) و ش...
متن کاملارائه یک موتور پیش بینی مبتنی بر ترکیب اطلاعات جهت پیش بینی قیمت در بازارهای برق
در بازارهای برق تجدیدساختاریافته، ییشبینی صحیح قیمت اهمیت فراوانی برای تمامی شرکتکنندگان بازار دارد. به دلیل ویژگیهای خاص و پیچیدگیهای سیگنال قیمت بازار، یک موتور پیشبینی نمیتواند به تنهایی تمامی الگوهای مختلف موجود در سیگنال قیمت را شناسایی و مدل نمایند. بنابراین، جهت افزایش صحت پیش بینیها، این مقاله یک روش هیبرید کننده ارائه میدهد تا بتواند از به صورت همزمان از مزیتهای چند موتور پیش...
متن کاملمقایسه قدرت پیش بینی بحران مالی توسط تکنیک های مختلف هوش مصنوعی
امروزه پیشرفت سریع فنآوری و تغییرات محیطی وسیع، منجر به رقابت روزافزون شده و دستیابی به سود را محدود و احتمال دچار شدن به بحران مالی را افزایش داده است. هدف این تحقیق بررسی قدرت پیشبینی بحران مالی توسط تکنیکهای مختلف هوش مصنوعی(الگوریتم ژنتیک خطی و غیر خطی و شبکه عصبی) است. بر اساس اطلاعات و آمارهای در دسترس شرکتهای پذیرفته شده در بورس اوراق بهادار تهران در طی دوره 1389-1376، از بین شرکتها...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
پژوهشهای حسابداری مالی وحسابرسیناشر: دانشگاه آزاد اسلامی واحد تهران مرکزی
ISSN 2383-0379
دوره 6
شماره 24 2014
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023